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A novel technique of functional Feynman-Kac equations is developed for the probability
distribution of the limit lognormal multifractal process introduced by Mandelbrot [in
Statistical Models and Turbulence, M. Rosenblatt and C. Van Atta, eds., Springer,
New York (1972)] and constructed explicitly by Bacry, Delour, and Muzy [Phys. Rev.
E 64:026103 (2001)]. The distribution of the process is known to be determined by
the complicated stochastic dependence structure of its increments (SDSI). It is shown
that the SDSI has two separate layers of complexity that can be captured in a precise
way by a pair of functional Feynman-Kac equations for the Laplace transform. Exact
solutions are obtained as power series expansions in the intermittency parameter using
a novel intermittency differentiation rule. The expansion of the moments gives a new
representation of the Selberg integral.

KEY WORDS: multifractals, intermittency, SDSI, Feynman-Kac, long-range
dependence, Selberg integral

1. INTRODUCTION

Multifractal stochastic processes provide an important new mathematical tool for
modelling stochastic phenomena that exhibit long-range dependence and self-
similarity. Such phenomena arise empirically in many areas of science rang-
ing from the physics of turbulence(24,30) to geophysics (29) to human heartbeat
dynamics and physiology(13,14) to asset returns. (6,33) While grid-bound canoni-
cal multifractals of Mandelbrot (21) have long been extant, the first formal con-
structions of grid-free multifractal processes have only been given very recently,
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confer. (2,5,7,26,31) All of these processes belong to the same class that we will refer
to as Limit Log-Infinitely Divisible multifractals.

Limit Log-Infinitely Divisible multifractals are constructed by replacing the
canonical hierarchy of products of independent identically distributed random
weights with a hierarchy of stochastic integrals over conical domains in the time-
scale plane and then taking the zero scale limit. The limit processes are thus
scale-free and have dependent, non-gaussian, and stationary increments. Most
importantly, they possess many remarkable features such as nonlinear moment
scaling, i.e. multiscaling, and stochastic self-similarity with log-infinitely divisible
multipliers, also known as scale-consistent continuous dilation invariance, which
make them into ideal candidates for multiplicative noises.

The subclass of limit lognormal multifractals was introduced and reviewed
by Mandelbrot, (19,22) and formalized in a series of papers by Kahane.(15–17) An
original construction of limit lognormal multifractals as stochastic processes as
opposed to random measures first appeared in Bacry et al., (2) who investigated
many of the properties of the limit process without rigorously taking the zero
scale limit. Most recently, a novel approach to limit lognormal multifractals was
presented in Schmitt (32) (henceforth referred to as the Schmitt process), whose
construction is based on stochastic integrals with respect to Brownian motion as
opposed to 2D gaussian random measures and is thereby simplified compared to
the previous work.

In this paper we continue our study of limit lognormal multifractals. In our
previous work(28) we quantified the distribution of the Bacry et al. (2) process
(henceforth referred to as the limit lognormal process) by a pair of exact integro-
differential relations for the Laplace transform and interpreted them as multifractal
counterparts of the star equation of Mandelbrot (20) and of the classical Girsanov
theorem. (12) These relations were obtained as the zero scale limit of discrete
hierarchies of finite scale approximations to the limit process. In this paper we
will introduce a more powerful continuous time approach that does not require
any discretization. It is based on a combination of the backward Kolmogorov
equation, a generalized Girsanov-type theorem for gaussian processes, and, most
importantly, new invariance properties of the limit lognormal process that are stated
and proved in the paper. This enables us to derive new functional Feynman-Kac
equations for the Laplace transform of the process.

The classical Feynman-Kac formula is a parabolic partial differential equation
for the Laplace transform of certain functionals of Brownian motion and, more
generally, Ito diffusions driven by it. The origin of the classical formula is the strong
Markov property of these diffusions. Our main contribution is that the Laplace
transform of the limit lognormal process, which is defined as the exponential
functional of a strongly nonmarkovian gaussian process, can still be described
by generalized Feynman-Kac equations. Our approach is based on invariance
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properties of this gaussian process and does recover the classical formula if we
replace the gaussian process with Brownian motion. Hence the name ‘Feynman-
Kac.’

The new equations improve over the previous results in four ways. First, they
capture and help distinguish in a precise way between the two separate layers of
complexity of the stochastic dependence structure of increments (SDSI) of the
limit lognormal process. Indeed, as this paper illustrates using the Schmitt process
as an example, the limit lognormal SDSI has two layers of complexity that can be
separated from each other. By removing the secondary and keeping the primary
layer, we obtain a toy limit lognormal process that has the same basic structure
of the SDSI. In addition, the new process shares some of the main properties
of the limit lognormal and Schmitt processes such as stationary increments and
a finite decorrelation length. We derive two pairs of functional Feynman-Kac
equations, each pair consisting of one equation for the exact and the other for the
toy process. The equations in the first pair exhibit the same basic mathematical
structure thereby attesting to the fact that the processes possess the same primarily
complexity layer of the SDSI. The equations in the second pair show different
mathematical structures. It is this difference that encodes the secondary layer of
complexity that both the limit lognormal and Schmitt processes have and the toy
model does not. We will collectively refer to all these equations as the SDSI
equations.

The SDSI equations are a simpler set of equations than the generalized star
equation derived in Ref. 28. While both approaches involve integrals with respect
to the entire path of the limit lognormal process, the former requires only one such
integral while the latter a whole continuum. However, their principal limitations
are the same, namely, that they are not single-variable equations due to the path
integral terms they contain. Remarkably, the second Feynman-Kac equation for the
toy process does reduce to a single-variable equation and can be used to actually
compute the underlying distribution.

The second contribution of the paper is the development of an exact expansion
of the Laplace transform of the limit lognormal distribution in powers of the
intermittency parameter. This expansion is a corollary of yet another functional
Feynman-Kac formula that is derived in the paper, which we think of as the
intermittency differentiation rule. While this formula also contains path dependent
terms, its main difference from the SDSI equations is that it can be iterated ad
infinitum. The coefficients of the expansion are computed recursively by multiple
integration. We believe this expansion to be the first result towards the goal of
explicitly computing the limit lognormal distribution and as such a major advance
in the field of multifractal modeling. Moreover, the differentiation rule allows us to
obtain similar power series expansions for all path dependent terms that enter the
SDSI equations as well as the generalized star equation, thereby formally solving
them exactly. The actual computation of all expansion coefficients is left for further
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research, we do, however, compute the first nontrivial terms in the intermittency
parameter and verify that all the equations hold in this approximation.

Third, the invariance properties of the limit lognormal process that are intro-
duced in the paper lead to simpler proofs of several of our previous results that
were originally established in Ref. 28 using a finite scale analysis.

Fourth, the SDSI equations for the limit lognormal process imply interesting
recurrence relations for the Selberg integral, (34) which is known to represent its
moments, confer. (3) In addition, the intermittency differentiation rule implies a
novel representation of the Selberg integral as a power series in the intermittency
parameter.

The plan of the paper is as follows. In Sec. 2 we present a brief review of the
limit lognormal and Schmitt processes and show that the limit lognormal distribu-
tion arises from a noncentral limit theorem. In Sec. 3 we describe the SDSI of the
Schmitt process and explain that it can be thought of as consisting of two separate
layers of complexity. We introduce a toy limit lognormal model that captures the
first layer only. In Sec. 4 we introduce our technique of functional Feynman-Kac
equations and state the first and second pairs of equations. In Sec. 5 we state the
intermittency differentiation rule, study the ensuing recurrence relations, and de-
rive infinite series representations for the Laplace transform of the limit lognormal
process, its moments, and related functionals. In Sec. 6 we give a summary of
the most significant results that appeared first in Ref. 28, clarify the significance
of the decorrelation length, and state the Selberg integral recurrences. In Sec. 7
we treat the low intermittency limit. In Sec. 8 we give proofs of the main results.
Section 9 presents conclusions. The Appendix describes the law of the toy model.

2. LIMIT LOGNORMAL MULTIFRACTALS

In this section we will give a concise summary of limit lognormal multifractals
following Refs. 26 and 32. We start by describing their properties, then proceed to
the constructive definition, and end the section with an original reformulation of
the limit lognormal distribution in light of a noncentral limit theorem. For the sake
of brevity, we will restrict our attention to increasing and positive processes known
as random times. This restriction can be easily relaxed by considering Brownian
motion in such time instead.

In the broadest sense, a limit lognormal random time is an increasing and pos-
itive stochastic process M(t), whose increments, denoted by δl M(t) ≡ M(t + l)
− M(t), obey the following multiscaling law in the limit of small increment size

E [δl M(t)q ] ∝ lζ (q), l → 0, (1)

ζ (q) = q
(

1 + µ

2

)
− µq2

2
. (2)



Functional Feynman-Kac Equations for Limit Lognormal Multifractals 939

The function ζ (q) is known as the multifractal spectrum and dates back to the
work of Mandelbrot. (22) The meaning of Eq. (1) is that the moments of the
increments of M(t) behave as a power law of the increment size, and the exponent
is a nonlinear function of the moment q, hence the ‘multi’ qualifier.

We are aware of two classes of explicit constructions that give rise to Eq. (1).
Both are based on the idea of considering exponential functionals of stationary
gaussian processes that fall under the class of special T -martingale processes
investigated by Kahane in a series of papers.(15–17) Specifically, let ωε(s) be a
stationary gaussian process in s, whose mean and covariance are functions of ε

that plays the role of a finite scale. We consider the process

Mε(t) =
∫ t

0
eωε(s) ds. (3)

The limit lognormal construction, due to Bacry et al., (2) defines the mean and
covariance of ωε(s) ≡ ωµ,L ,ε(s) to be

E[ωε(t)] = −µ

2

(
1 + log

L

ε

)
, (4)

Cov[ωε(t), ωε(s)] = µ log
L

|t − s| , ε ≤ |t − s| ≤ L , (5)

Cov[ωε(t), ωε(s)] = µ

(
1 + log

L

ε
− |t − s|

ε

)
, (6)

if |t − s| < ε, and covariance is zero in the remaining case of |t − s| ≥ L . Thus,
ε is used as a truncation scale. L is the fundamental decorrelation length of the
process that regulates the extent of long-range dependence. Indeed, nonoverlapping
increments of Mε(t) are dependent only if they are within L apart. µ is the
intermittency parameter.3 Note that E[exp(ωε(s))] = 1 so that E[Mε(t)] = t.

The second construction is due to Schmitt, (32) which we have re-cast here
into a form that is compatible with the first construction. Let ωε(s) be defined by

ωε(s) = √
µ

∫ L+s

s+ε

1√
u − s

dB (u) − µ

2
log

L

ε
. (7)

B(u) denotes the standard one-dimensional Brownian motion starting at zero. The
roles that ε, L , and µ play are exactly the same as what they are in the limit
lognormal construction. In particular, ωε(s) is stationary, the covariance between
ωε(s) and ωε(t) is nonzero only so long as |t − s| < L , and E[exp(ωε(s))] = 1.

3 It is more common to use λ2 instead of µ and refer to λ as the intermittency parameter. However, our
results are most naturally expressed in terms of µ.
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The covariance is calculated to be

Cov [ωε(t), ωε(s)] = 2µ log

√
L − |t − s| + √

L√|t − s| + ε + √
ε

, |t − s| ≤ L . (8)

The interest in both the limit lognormal and Schmitt constructions stems from
the ε → 0 limit. Bacry and Muzy(4) showed that Mε(t) converges weakly (as a
measure on R

+) a.s. to a limit process M(t) = limε→0 Mε(t) provided 0 ≤ µ < 1,

the limit is nondegenerate in the sense that E[M(t)] = t, and, most importantly,
obeys Eq. (1). It is not too difficult to verify that the same is true of the Schmitt
construction. The condition for the finiteness of the positive moments of both
processes is

E [M(t)q ] < ∞ ⇔ q <
2

µ
. (9)

In particular, the moments do become infinite so that the naive expansion of the
Laplace transform of M(L) in terms of the moments is not possible. In both cases,
the existence and nondegeneracy of the limit is based on the theory of convergence
of T -martingales of Kahane. (16) The fundamental reason for multifractality in the
sense of Eq. (1) is that in both constructions the covariance blows up as

Cov [ωε(t), ωε(s)] ∝ log |s − t | (10)

in the limit |s − t | → 0. This particular asymptotic behavior and the condition
E[exp(ωε(s))] = 1 are known from the general theory of lognormal multiplicative
chaos of Kahane(15) to be sufficient for generating multifractality.

The limit lognormal process possesses a much stronger form of multifractality
than Eq. (1) known as stochastic self-similarity or scale-consistent continuous
dilation invariance,

M(t) = Wt/L M(L), t < L , (11)

understood as the equality in law. Wt/L is a lognormal multiplier that is independent
of M(L), confer Ref. 26 for the original derivation or Ref. 28 for review. For our
purposes, the main implication of Eq. (11) is that the law of M(L) determines that
of M(t) for any t < L so that we need only understand M(L).

We will now reformulate the limit distribution as an explicit noncentral limit
problem. Let us break up time into the subintervals of length ε so that s j = jε,

ω j
�= ωε(s j ), and Nε = L . It is shown in Ref. 4 that the limit distribution M(L)

can be approximated as

ε

N−1∑
j=0

eω j → M(L) as ε → 0. (12)
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Now, consider a new set of random variables η j defined by

η j = ω j − ω j−1, j = 1 . . . N − 1. (13)

Clearly, the sum in Eq. (12) can be written as

eω0
L

N

N−1∑
j=0

j∏
k=1

eηk ≡ eω0
L

N

(
1 + eη1 + eη1 eη2 + · · · + eη1 · · · eηN−1

)
. (14)

What is remarkable about the representation in Eq. (14) is that the η j are renor-
malized. Indeed, it is easy to see using Eqs. (4)–(6) that the joint distribution of
the η j and ω0 is gaussian with the following means and variances4

E[η j ] = 0, Var[η j ] = 2µ, (15)

Cov[η j , η j+l] = µ
(

log(l + 1) + log(l − 1) − 2 log(l)
)
, (16)

Cov[ω0, η j ] = µ
(

log( j − 1) − log( j)
)
. (17)

It follows that the joint distribution of the η j depends on N only in the their
total number so that the only nontrivial N dependence in Eq. (14) comes from
the prefactor eω0/N . Thus, the problem of computing the N → ∞ limit of the
distribution that appears in Eq. (14) is formally similar to the sum of products
problems that naturally appear in the physics of 1D disordered systems, confer
Refs. 9 and 18 for example. However, the fundamental difference between the
two is that in our case the random factors exp(η j ) are strongly dependent unlike
in disordered system problems. This strong dependence is the main source of
complexity of as well as interest in the limit lognormal construction.

This completes our overview of limit lognormal multifractals. The main
purpose of this paper is to quantify the limiting distribution of the limit lognormal
process M(t) at t = L beyond what we did in Ref. 28. The essential complexity
of the task has to do with the very complicated stochastic dependence structure of
increments (SDSI) of M(t), the subject that we proceed to next.

3. STOCHASTIC DEPENDENCE STRUCTURE

OF INCREMENTS (SDSI)

In this section we will explain the SDSI of limit lognormal processes. We explained
in Ref. 28 that the main properties of this structure are: first, all nonoverlapping
increments of M(t) that are within the distance L apart are dependent and, second,
their dependence requires infinitely many independent multipliers. The Schmitt
construction enables us to further elucidate the SDSI of M(t) due to the availability

4 Using the convention that log(0) = −1.
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of an explicit representation of ωε(s) in Eq. (7) in terms of Brownian motion. While
the SDSI of the limit lognormal process has the same mathematical structure, it is
more difficult to extract as we do not know of any explicit representation of ωε(s)
in Eqs. (4)–(6) in terms of Brownian motion.

We start with Eq. (7) and discretize it by breaking up time into subintervals
of length ε each and then replacing integrals with sums. Denote f (u) = 1/

√
u.

The natural discrete time approximation to Mε(t) is

Mε(t) ≈ ε

(
L

ε

)− µ

2
t∑

s=0

L+s∏
u=s+ε

exp
(√

µ f (u − s)�B(u)
)
. (18)

Each individual summand in Eq. (18) contains the product of independent log-
normal random weights exp(

√
µ f (u − s)�B(u)) as nonoverlapping increments

of Brownian motion �B(u) are independent. However, the weights are recurrent
in the sense that the same weights occur for different values of s. Thus, in the
limit ε → 0, we end up with the infinite sum of infinite products of these recurrent
weights. This is the origin of the SDSI of the process.

The mathematical complexity of the problem is twofold. We believe that
it is determined primarily by the recurrence of weights. The secondary layer of
complexity is that the weights are not identically distributed, i.e. f (u) is not a
constant. It is precisely the singularity of f (u) at the origin that is responsible for
the logarithmic singularity in the covariance in Eq. (10), thus giving rise to multi-
fractality. However, if we make f (u) constant and thereby give up multifractality,
the primary source of complexity remains intact.

This observation leads us to consider a new process, stripped of the sec-
ondary layer of complexity by setting f (u) = 1, which has the effect of mak-
ing the lognormal weights in Eq. (18) to be all identically distributed and
results in

M (toy)(t) =
∫ t

0
e
√

µ

(
B(L+s)−B(s)

)
−µ L

2 ds. (19)

We call it the toy limit lognormal process. M (toy)(t) shares most of the features
of the exact limit lognormal process, namely, it has stationary increments that
are dependent only so long as they are within L apart, i.e. L continues to play
the role of the decorrelation length of the process, and E[M (toy)(t)] = t. The
main difference is that M (toy)(t) is not multifractal. Its law is derived in the
Appendix.

In the next section we will state two pairs of functional Feynman-Kac equa-
tions that quantify the primary and secondary complexity layers, respectively,
which we introduced in this section.
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4. FEYNMAN-KAC EQUATIONS FOR THE TWO LAYERS

OF COMPLEXITY

As is well-known, the Feynman-Kac formula for the standard one-dimensional
Brownian motion starting at x is the following partial differential equation for the
functional u(x, L) = Ex [exp(− ∫ L

0 q(B(u)) du)], where q(x) is a smooth, positive
function,

1

2

∂2u

∂x2
= ∂u

∂L
+ q(x)u. (20)

In the special case of q(x) = z exp(x) and x = 0, we then obtain the Feynman-
Kac formula for the Laplace transform of the exponential functional of Brownian
motion starting at zero v(z, L) = E[exp(−z

∫ L
0 eB(u)du)]

1

2

[
z
∂v

∂z
+ z2 ∂2v

∂z2

]
= ∂v

∂L
+ zv(z, L). (21)

Our goal in this section is to derive the analogues of Eq. (21) for the Laplace
transform of the exact and toy limit lognormal processes and thereby quantify
their laws and capture the primary and secondary complexity layers of their SDSIs.
Before we proceed to state our results, it is worth pointing out that the essential
novelty as well as difficulty of the problem is that the gaussian processes that enter
the exponential functionals in Eqs. (3) and (19) are non-markovian.

Our main object of interest throughout this paper is the following generalized
Laplace transform

v(z, µ, L , f )
�= E

[
exp

(
−z

∫ L

0
eµ f (s)dM (s)

)]
(22)

of the limit lognormal process, where f (s) is an arbitrary smooth function5 that
may depend on L but does not involve the intermittency parameter µ. All f (s)
functions that appear in applications below are of the form f (s) = g(s, u) for
some u ∈ [0, L], and the function g(s1, s2) is defined by

g(s1, s2)
�= log

L

|s1 − s2| . (23)

Its significance is that limε→0 Cov(ωε(s1), ωε(s2)) = µ g(s1, s2). The integration
with respect to the limit measure dM (s) is understood in the sense of ε → 0
limit of dM ε(s) so that v(z, L , f ) = limε→0 vε(z, L , f ), where vε(z, L , f ) is
the generalized Laplace transform of the random measure dM ε(s) introduced in

5 Unless stated otherwise, the term ‘function’ is reserved for nonrandom functions. Throughout this
section we fix 0 ≤ µ < 1 and drop it from the list of arguments of the generalized Laplace transform
to abbreviate v(z, L , f ).
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Eq. (3) with the ωε(s) process as in Eqs. (4)–(6). In the special case of f ≡ 0,

v(z, L , f ) is the Laplace transform of M(L), which we will denote by v(z, L).

Proposition 4.1. The generalized Laplace transform v(z, L , f ) of the limit
lognormal process satisfies
(

µ

2L
z2 ∂2

∂z2
− ∂

∂L

)
v(z, L , f ) = z eµ f (L) v

(
z, L , f + g(·, L)

)

+µz

∫ L

0

∂ f

∂L
(u) eµ f (u) v

(
z, L , f +g(·, u)

)
du.

(24)

Corollary 4.1. The Laplace transform v(z, L) of the limit lognormal distribution
M(L) satisfies

(
µ

2L
z2 ∂2

∂z2
− ∂

∂L

)
v(z, L) = z v

(
z, L , g(·, L)

)
. (25)

This is the first Feynman-Kac formula for the limit lognormal process.

Corollary 4.2. The Laplace transform v(z, L) of the limit lognormal distribution
M(L) satisfies

(
µ

2L
z2 ∂2

∂z2
− ∂

∂L

)2

v(z, L) = z2 v
(
z, L , g(·, 0) + g(·, L)

)
. (26)

This is the second Feynman-Kac formula for the limit lognormal process. The
proof of Proposition 4.1 and its corollaries is deferred to Sec. 8 so as not to
interrupt the flow of presentation in this section.

We will now contrast these results with the corresponding results for the
toy limit lognormal process. Let the generalized Laplace transform be de-
noted by v(toy)(z, L , f )

�= E[exp(−z
∫ L

0 eµ f (s)dM (toy)(s))]. The covariance of the
ω(s)

�= √
µ(B(L + s) − B(s)) − µL/2 process in Eq. (19) is µ(L − |s − t |) so

that g(toy)(s1, s2)
�= L − |s1 − s2|.

Proposition 4.2. The Laplace transform v(toy)(z, L) of the toy limit lognormal
distribution satisfies

(
µ

2
z2 ∂2

∂z2
− ∂

∂L

)
v(toy)(z, L) = z v(toy)

(
z, L , g(toy)(·, L)

)
, (27)

(
µ

2
z2 ∂2

∂z2
− ∂

∂L

)2

v(toy)(z, L) = z2 v(toy)(zeµL , L). (28)
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These are the Feynman-Kac formulas for the toy limit lognormal process. The
proof is in Sec. 8.

We can draw several conclusions from Propositions 4.1 and 4.2. First, we
see a clear similarity between Eqs. (25) and (27). They possess the same general
mathematical structure, and their right-hand sides exhibit the same type of func-
tional shifts that are induced by the corresponding covariances via the g functions.
This similarity is indicative of the fact that the pair of Eqs. (25) and (27) captures
the same primary layer of complexity of the exact and toy limit lognormal SDSIs.

Second, Eqs. (25) and (27) are essentially different from the classical
Feynman-Kac formula in Eq. (21). While all three equations are of parabolic
type, Eq. (21) is a regular partial differential equation, whereas Eqs. (25) and
(27) are functional differential equations as they involve the entire path of the
process up to time L . This is reflective of the fact that our problem is intrinsically
non-markovian.

Third, what is not immediately obvious is that despite the difference between
the classical Feynman-Kac formula in Eq. (21) and the functional Feynman-Kac
formulas in Eq. (25) and (27), they have the same mathematical origin as shown
in Sec. 8, hence the ‘Feynman-Kac’ appellation.

Finally, the pair of Eqs. (26) and (28) distinguishes between the secondary
layers of complexity of the exact and toy models, i.e. the presence of non-identically
distributed weights in the exact construction. As did the first pair, Eqs. (26) and
(28) have the same mathematical structure. Indeed, their left-hand sides involve
squares of parabolic operators and their right-hand sides involve the same type
of functional shifts. This follows from the identity g(toy)(s, 0) + g(toy)(s, L) = L
so that v(toy)(zeµL , L) = v(toy)(z, L , g(toy)(·, 0) + g(toy)(·, L)). The difference
between Eqs. (26) and (28) is also manifest, for Eq. (26) is fully path-dependent,
whereas Eq. (28) is a single-variable equation for the dependent variable
v(toy)(z, L), due to the cancelation of s dependence. The persistence of this path-
dependence is what distinguishes between the secondary layers of complexity.
In summary, it is the difference in fine properties of the underlying covariance
structures that leads to the different secondary layers of complexity.

The same point can be argued by noticing that the presence of a path de-
pendent term in Eq. (26) and its lack in Eq. (28) is indicative of how “far” the
underlying ω(s) process is from being markovian. Indeed, it is not difficult to see
that in the toy model this process can be represented as the sum of a Brownian mo-
tion and an independent time-reversed Brownian motion via B(L + s) − B(s) =
(B(L + s) − B(L)) + (B(L) − B(s)), which is “almost” markovian. It is this prop-
erty that enables us to compute the law of M (toy)(L), confer the Appendix.

Henceforth, we will refer to Eqs. (25) and (26) as the SDSI equations for the
limit lognormal process.
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5. A FEYNMAN-KAC EQUATION FOR THE INTERMITTENCY

DIFFERENTIATION

In this section we will establish a differentiation rule that quantifies how the
distribution of the limit lognormal process varies with the intermittency parameter.
Mathematically, it can be thought of as another Feynman-Kac formula that is
obeyed by the Laplace transform of the process. The principal difference of this
result from those of the preceding section is that the differentiation formula can
be iterated ad infinitum, thus resulting in power series expansions for the Laplace
transform as well as the moments of the limit lognormal process.

As in Sec. 4, the main object of study is the generalized Laplace transform
v(z, µ, L , f ). Throughout this section we fix L and drop it from the list of
arguments so as to write v(z, µ, f ) instead. The following theorem quantifies
how v(z, µ, f ) varies as a function of µ.

Proposition 5.1. The generalized Laplace transform v(z, µ, f ) solves

∂

∂µ
v(z, µ, f )= z2

2

∫

⊗2
v
(
z, µ, f +g(·, s1)+g(·, s2)

)
eµ( f (s1)+ f (s2)+g(s1, s2))

× g(s1, s2) d
s(2)−z

∫

⊗1
v
(
z, µ, f +g(·, s)

)
eµ f (s) f (s) ds, (29)

where
∫
⊗k is an abbreviation for

∫ L
0 · · · ∫ L

0 d
s(k) and g(s1, s2) is as in Eq. (23).

The proof is given in Sec. 8. We can summarize Eq. (29) by saying that differenti-
ation with respect to the intermittency parameter µ is equivalent to a combination
of two functional shifts induced by the g function. The first corresponds to the de-
pendence of M(t) on µ, while the second to the appearance of µ in the exponential
integrand in Eq. (22).

Corollary 5.1. The generalized Laplace transform v(z, µ, f ) satisfies

∂n

∂µn
v(z, µ, f ) =

2n∑
k=1

zk

∫

⊗k
v

(
z, µ, f +

k∑
i=1

g(·, si )

)
eµ

(∑k
i< j g(si ,s j )+

∑k
i=1 f (si )

)

× hn,k(
s) d
s(k). (30)
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for some functions hn,k(
s) ≡ hn,k(s1, . . . , sk), k = 1 . . . 2n, that are computed
iteratively via the following three-term recurrence6

hn+1,k(
s) = 1

2
hn,k−2(
s)g(sk−1, sk) − hn,k−1(
s)

(
k−1∑
i=1

g(si , sk) + f (sk)

)

+ hn,k(
s)

(
k∑

i< j

g(si , s j ) +
k∑

i=1

f (si )

)
, k = 1 . . . 2n + 2, (31)

starting with

h1,1(s) = − f (s), h1,2(s1, s2) = 1

2
g(s1, s2). (32)

The functions hn,k(
s) can be taken to be symmetric in s1 · · · sk .

Several remarks are in order. First, the recurrence relation of Eq. (31) does not
automatically produce a symmetric hn+1,k(
s), however the symmetry can always
be imposed as the rest of the integrand in Eq. (30) is manifestly symmetric.
Second, if f ≡ 0, then the range of k is changed to 2 · · · 2n. Finally, the proof of
Corollary 4.1 is a straightforward, while tedious, application of the intermittency
differentiation rule of Proposition 5.1.

It is worth listing the first few hn,k(
s) functions so as to clarify their general
structure. For simplicity, we assume that f ≡ 0. Then, after symmetrization, we
have

h2,2(s1, s2) = 1

2
g2(s1, s2), (33)

h2,3 = −1

3

(
g(s1, s2)g(s1, s3)+g(s2, s1)g(s2, s3)+g(s3, s1)g(s3, s2)

)
, (34)

h2,4 = 1

12

(
g(s1, s2)g(s3, s4)+g(s1, s3)g(s2, s4)+g(s1, s4)g(s2, s3)

)
. (35)

Recalling the definition of the g function in Eq. (23), we can conclude that the hn,k

functions are formed as symmetrized products of logarithms. Moreover, it is easy
to see that each hn,k is a sum of products, each of which having exactly n factors
of the g function. It follows that in the case of f ≡ 0, the integrals

Hn,k ≡
∫ 1

0
· · ·

∫ 1

0
hn,k(
tL) d
t(k) (36)

are independent of L so that
∫
⊗k hn,k(
s) d
s(k) = Lk Hn,k .

6 Empty sums and hn,k (
s) for the values of k outside of k = 1 · · · 2n are understood to mean zero.
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Corollary 5.1 yields the Taylor expansion of the generalized Laplace trans-
form in powers of the intermittency parameter as its immediate corollary. Indeed,
if µ = 0, M(t) = t so that all the higher derivatives can be computed iteratively.

Corollary 5.2.

E

[
exp

(
− z

∫ L

0
eµ f (s)dM (s)

)]
= e−zL

(
1+

∞∑
n=1

µn

n!

[
2n∑

k=1

zk

∫

⊗k
hn,k(
s) d
s(k)

])
.

(37)

Thus, we have effectively shown how to compute the Laplace transform of∫ L
0 eµ f (s)dM (s) for an arbitrary f (s) that does not itself involve µ. In particu-

lar, all functionals that occur in Proposition 4.1 and its corollaries are of this form
so that Eq. (37) gives exact solutions to the SDSI equations.

For the rest of this section we restrict ourselves to the case of the Laplace
transform of M(L) that corresponds to f ≡ 0 and the k sum in Eq. (37) starting
at k = 2. We obtain

E
[
e−zM(L)

] = e−zL

(
1 +

∞∑
n=1

µn

n!

[
2n∑

k=2

(zL)k Hn,k

])
. (38)

As expected, confer (28) and Sec. 6 below, the Laplace transform is a function of µ

and zL .

We conclude this section with an application of Corollary 5.2 to the Selberg
integral. The integral moments of the limit lognormal process were shown in Ref. 3
to be given by the celebrated Selberg integral, confer Refs. 1 and 34

E[M(L)m] = Lm
∫ 1

0
· · ·

∫ 1

0

m∏
i< j

|si − s j |−µd
s(m), m ≥ 2, (39)

which is convergent provided m < 2/µ, confer Eq. (9).

Proposition 5.2. Given 0 ≤ µ < 1 and 2 ≤ m < 2/µ, the Selberg integral has
the expansion

∫ 1

0
· · ·

∫ 1

0

m∏
i< j

|si − s j |−µd
s(m) = 1 +
∞∑

n=1

µn

n!

min{2n,m}∑
k=2

(−1)k m!

(m − k)!
Hn,k . (40)

The proof is deferred to Sec. 8.
In summary, Eq. (37) gives us the complete expansion of the generalized

Laplace transform of the limit lognormal process and Eq. (40) of the Selberg
integral in powers of µ. In Sec. 7 we will explicitly compute these expansions up
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to the first nontrivial terms in the intermittency parameter µ and verify the SDSI
equations to this order of accuracy.

6. RESULTS OF FINITE SCALE ANALYSIS REVISITED

In this section we will give a summary of the main results that appeared first in
Ref. 28 and clarify the role of the decorrelation length L . The original arguments
were based on discretization and the resulting finite scale analysis. We can now
give new proofs that do not require discretization and follow the pattern of the two
preceding sections. This is done in Sec. 8.

The primary object of interest in this section is the Laplace transform of
M(t), t < L , that we denote by v(z, µ, t, L). As before, v(z, µ, L) denotes the
Laplace transform of M(L) so that v(z, µ, L) = v(z, µ, L , L). We also need
the family of auxiliary processes M (u)(t), 0 ≤ u ≤ 1, that we first introduced in
Ref. 28

M (u)(t) =
∫ t

0

∣∣∣ s

t
− u

∣∣∣
−µ

d M(s). (41)

It is worth noting that these processes are multifractal in the sense of Eq. (11) as
shown in Ref. 28. Clearly, M (u=0)(L) is the auxiliary random variable that appeared
in Corollary 4.1.

Proposition 6.1. The Laplace transform v(z, µ, t, L) solves
(

t
∂

∂t
+ µ

2
z2 ∂2

∂z2
− z

∂

∂z

)
v(z, µ, t, L) = 0. (42)

Equation (42) was shown in Ref. 28 to be a statement of stochastic self-similarity of
M(t) and is equivalent to Eq. (11). In particular, it does not capture the distribution
of M(L) but only of M(t), t < L , in terms of M(L).

Proposition 6.2. The Laplace transform v(z, µ, t, L), t < L , solves
(

t
∂

∂t
+ L

∂

∂L
− z

∂

∂z

)
v(z, µ, t, L) = 0, (43)

z
∂

∂z
v(z, µ, L) = L

∂

∂L
v(z, µ, L). (44)

Equation (43) means that v(z, µ, t, L) is a function of (µ, zL , t/L) and Eq. (44)
means that v(z, µ, L) is a function of µ and zL . Both assertions, but not the
equations, appeared first in Ref. 28.
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Proposition 6.3. The Laplace transform v(z, µ, t, L), t < L , solves

∂

∂z
v(z, µ, t, L) = −t

∫ 1

0
E

[
e−z( t

L )−µ M (u)(t)
]

du. (45)

Equation (45) was interpreted in Ref. 28 as a generalized star equation of Man-
delbrot.

In light of Eq. (44), it is sufficient to restrict ourselves to L = 1 due to
v(z, µ, L) = v(zL , µ), which is equivalent to M(L) = L M(1) in law.7 Hence-
forth, we let L = 1 without any loss of generality and thereby give simpler for-
mulations of the SDSI equations, generalized star equation, and intermittency
differentiation rule. Introducing the operator

L = µ

2
z

∂2

∂z2
− ∂

∂z
, (46)

we can then simplify Eqs. (25), (26), (45), and (29) as follows

Lv(z, µ) = E

[
exp

(
− z

∫ 1

0
s−µdM (s)

)]
, (47)

(
L + µ

∂

∂z

)
Lv(z, µ) = E

[
exp

(
− z

∫ 1

0
s−µ(1 − s)−µdM (s)

)]
, (48)

∂

∂z
v(z, µ) = −

∫ 1

0
E

[
e−zM (u)(1)

]
du, (49)

∂

∂µ
v(z, µ) = − z2

2

∫ 1

0

∫ 1

0
E

[
exp

(
− z

∫ 1

0
|s−s1|−µ|s−s2|−µdM (s)

)]

× |s1 − s2|−µ log |s1 − s2| d
s(2). (50)

The SDSI equations, Eqs. (47) and (48), are simpler than the generalized star
equation, Eq. (49), as they only involve one path integral, whereas Eq. (49) involves
one per u ∈ [0, 1], i.e. infinitely many. The obvious difficulty that they all share is
that they are not single-variable equations as they involve the entire path of M(s)
for s ∈ [0, 1]. It remains an open problem to eliminate this path dependence so as
to derive a single-variable equations for the Laplace transform.

We end this section with a remark concerning the Selberg integral, confer
Eq. (39) above. Following Ref. 1, we introduce the notation

Sn(α, β, γ ) =
∫ 1

0
· · ·

∫ 1

0

n∏
k=1

sα−1
k (1 − sk)β−1

n∏
i< j

|si − s j |2γ d
s(n). (51)

7 This is also a corollary of Eq. (14).
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Then, E[M(1)n] = Sn(1, 1,−µ/2). It is not difficult to see that Eqs. (47) and (48)
imply the following recurrence relations for the Selberg integral

(
1 − µ

2
n

)
Sn+1

(
1, 1,−µ

2

)
= Sn

(
1 − µ, 1,−µ

2

)
, (52)

(
1 − µ

2
(n + 2)

)
Sn+1

(
1 − µ, 1,−µ

2

)
= Sn

(
1 − µ, 1 − µ,−µ

2

)
. (53)

Finally, Eq. (49) implies yet another recurrence relation

Sn+1(1, 1,−µ/2)=
∫ 1

0
du

[ ∫ 1

0
· · ·

∫ 1

0

n∏
k=1

|sk −u|−µ

n∏
i< j

|si −s j |−µd
s(n)

]
. (54)

All of these recurrences appear to be new.

7. THE LOW INTERMITTENCY LIMIT

The key expansions in Eqs. (37) and (40) are exact. They require the knowledge
of the coefficients

∫
⊗k hn,k(
s) d
s(k), which can all be computed in principle by the

iterative rule of Corollary 5.1. As such computations are not easy, we will restrict
our attention here to the terms of order one: h1,1 and h1,2. Specifically, we will
compute the Laplace transform of M(1) and the following related functionals

∫ 1

0
s−µdM (s),

∫ 1

0
s−µ(1 − s)−µdM (s), M (u)(1), u ∈ [0, 1],

which enter Eqs. (47)–(49), up to the first nontrivial terms in the intermittency
parameter µ.

Proposition 7.1.

E[exp(−zM(1))] = e−z

(
1 + 3

4
µz2

)
+ o(µ), (55)

E

[
exp

(
−z

∫ 1

0
s−µdM (s)

)]
= e−z

(
1 − µz + 3

4
µz2

)
+ o(µ), (56)

E

[
exp

(
−z

∫ 1

0
s−µ(1−s)−µdM (s)

)]
= e−z

(
1−2µz+ 3

4
µz2

)
+ o(µ), (57)

E
[
e−zM (u)(1)

]= e−z

(
1+µz[u log u+(1−u) log(1−u)−1]+ 3

4
µz2

)
+ o(µ). (58)

The expressions in Eqs. (55)–(58) obey Eqs. (47)–(49) up to o(µ).
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The proof follows directly from Corollary 5.2.
We end this section with a similar result for the Selberg integral.

Proposition 7.2. Given 0 ≤ µ < 1 and 2 ≤ m < 2/µ,

∫ 1

0
· · ·

∫ 1

0

m∏
i< j

|si − s j |−µd
s(m) = 1 + 3

4
µ m(m − 1) + o(µ). (59)

This is a corollary of Proposition 5.2.
The higher order coefficients are analytically computable and appear to have

a number theoretic content. Indeed, they can be expressed in terms of values of
the Riemann zeta function on positive integers. The computation is quite lengthy
and will not be given here.

8. THE PROOFS

In this section we will present detailed proofs of most of our results as well as
several key lemmas. For the convenience of the reader, the proofs of propositions
from Sec. 6 follow right after those from Sec. 4 as they are based on the same
technique. The proofs of Propositions 5.1 and 5.2 are given at the end of the
section.

Throughout this section we will use gL ,ε(s1, s2) to denote the ε trunca-

tion of the g(s1, s2) function defined in Eq. (23) so that Cov(ωε(s1), ωε(s2))
�=

µ gL ,ε(s1, s2)8 and limε→0 gL ,ε(s1, s2) = g(s1, s2).
We begin with an auxiliary lemma that extends the classical theorem of

Girsanov. (12)

Lemma 8.1. Let ω(s) be a gaussian process defined on an interval s ∈ [0, L],
which has continuous sample paths and satisfies

E[exp(ω(s))] = 1 (60)

for all s. Let s1 and s2 be any two distinct times, s1, s2 ∈ [0, L], and let C(s, t)
�=

Cov(ω(s), ω(t)) denote the covariance function of ω(s), which is assumed to be
continuous. Let u(z, f ) denote the exponential functional

u(z, f )
�= exp

(
−z

∫ L

0
e f (s)+ω(s) ds

)
, (61)

8 The L subscript is there to emphasize the dependence on L , which is important in the proof of
Proposition 5.1 below.
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where f is an arbitrary continuous function. Then,

E[u(z, f + C(·, s1))] = E[u(z, f ) eω(s1)], (62)

E[u(z, f + C(·, s1) + C(·, s2))] = e−C(s1,s2)E
[
u(z, f ) eω(s1)+ω(s2)

]
, (63)

∫ L

0
e f (s)E[u(z, f + C(·, s))] ds = − ∂

∂z
E[u(z, f )]. (64)

Proof: Introduce an equivalent probability measure

dQ �= eω(s1) dP,

where P is the original probability measure corresponding to E. Then, the law
of the process s → ω(s) + C(s, s1) with respect to P equals the law of the orig-
inal process s → ω(s) with respect to Q. Indeed, it is easy to show that the two
processes have the same finite-dimensional distributions by computing their char-
acteristic functions. The computation, which is similar to the argument given in
Ref. 27, is straightforward and will be omitted. The continuity of sample paths can
then be used to conclude that the equality of all finite-dimensional distributions
implies the equality in law. An alternative argument is given in the appendix of
Ref. 28.

To verify Eq. (63), it is sufficient to remark that the measure

dQ �= eω(s1)+ω(s2)−C(s1,s2) dP

is a probability measure that is equivalent to the original probability measure
P. It follows that the finite-dimensional distributions of the process s → ω(s) +
C(s, s1) + C(s, s2) with respect to P are the same as those of the original process
s → ω(s) with respect to Q. The rest of the argument goes through verbatim.

Equation (64) follows directly from Eq. (62). �

Lemma 8.2. The gaussian process ωµ,L ,ε(s) defined in Eqs. (4–6) has continuous
sample paths.

Proof: As it is stationary gaussian, it is sufficient to show that its covariance

function r (τ )
�= C(0, τ ) is continuous and obeys the asymptotic

|r (τ ) − r (0)| = O(| log |τ ||−q ), τ → 0,

for some q > 3, confer Theorem 9.2.1 in Ref. 8 and Theorem 3.5.7 in Ref. 11.
In our case, the covariance function is manifestly continuous and |r (τ ) − r (0)| =
µ|τ |/ε for |τ | ≤ ε clearly satisfies this asymptotic. �
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Proof of Proposition 4.1: The argument relies on a special invariance property
of the ωε(s) process in Eqs. (4)–(6) combined with the backward Kolmogorov
equation and Lemma 8.1. We will write ωL ,ε(s) to emphasize the dependence of
the process’ covariance on L . Let f (s) be an arbitrary smooth function that does
not involve µ and vε(z, L , f ) denote the generalized Laplace transform of the
random measure dM ε(s) as in Sec. 4. Let

uε(z, L , f )
�= exp

(
−z

∫ L

0
eµ f (s)+ωL ,ε(s) ds

)
(65)

so that vε(z, L , f ) = E[uε(z, L , f )]. Let us consider the limit

A
�= ∂

∂δ

∣∣∣∣
δ=0

E∗[vε

(
zeB∗(δ), L , f

)]
, (66)

where B∗(t) is the standard Brownian motion independent of ωL ,ε(s) and E∗

denotes the expectation with respect to B∗(t). By the backward Kolmogorov
equation, we have

A = 1

2

∂2

∂x2

∣∣∣∣
x=0

vε (zex , L , f ) = 1

2

[
z

∂

∂z
+ z2 ∂2

∂z2

]
vε(z, L , f ). (67)

On the other hand, we have the following equality in law of stochastic pro-
cesses viewed as random functions of s on the interval [0, L] at fixed δ, µ,

and ε

B∗(δ) + ωL ,ε(s) = ωLeδ/µ,ε(s) + δ

2
. (68)

This is the decorrelation length invariance and is the first of four such invariances
that are established in this paper. Since both processes are gaussian, it is sufficient
to show that their means and covariances coincide on the interval s ∈ [0, L],
which follows by inspection from Eqs. (4)–(6). Now, we have from Eq. (68) the
equality in law

eB∗(δ)
∫ L

0
eµ f (s)+ωL ,ε(s)ds = e

δ
2

∫ L

0
eµ f (s)+ωLeδ/µ,ε

(s)ds. (69)

By rewriting the integral in Eq. (69) as
∫ L

0 · · · ds = ∫ Leδ/µ

0 · · · ds − ∫ Leδ/µ

L · · · ds,
it follows that the limit in Eq. (66) equals

A = 1

2
z
∂vε

∂z
+ L

µ

∂vε

∂L
+ zL

µ
eµ f (L) E

[
uε(z, L , f )eωL ,ε(L)

]

+ zL

∫ L

0

∂ f

∂L
(s) eµ f (s) E

[
uε(z, L , f )eωL ,ε(s)

]
ds. (70)
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By Lemma 8.1, this simplifies to

A = 1

2
z
∂vε

∂z
+ L

µ

∂vε

∂L
+ zL

µ
eµ f (L) vε(z, L , f + gL ,ε(·, L))

+ zL

∫ L

0

∂ f

∂L
(s) eµ f (s) vε(z, L , f + gL ,ε(·, s)) ds. (71)

To complete the proof, it remains to equate Eqs. (67) and (71) and take the
ε → 0 limit. �

Proof of Corollary 4.1: The result follows from Proposition 4.1 by setting
f ≡ 0. �

Proof of Corollary 4.2: By Proposition 4.1 with f (s) = g(s, 0) we obtain
(

µ

2L
z2 ∂2

∂z2
− ∂

∂L

)
v(z, L , g(·, 0)) = zv(z, L , g(·, 0) + g(·, L))

+ µ

L
z

∫ L

0
eµg(u,0)v(z, L , g(·, 0)+g(·, u)) du.

(72)

The integral in Eq. (72) equals −∂/∂z v(z, L , g(·, 0)) by Lemma 8.1, Eq. (64).
By symmetry, v(z, L , g(·, L)) = v(z, L , g(·, 0)). The result now follows from
Corollary 4.1 using the identity
(

µ

2L
z2 ∂2

∂z2
+ µ

L
z

∂

∂z
− ∂

∂L

)
1

z

(
µ

2L
z2 ∂2

∂z2
− ∂

∂L

)
= 1

z

(
µ

2L
z2 ∂2

∂z2
− ∂

∂L

)2

.

(73)
�

Proof of Proposition 4.2: The argument follows exactly the same steps as in the
proof of Proposition 4.1 and its corollaries. Instead of Eq. (68) we now have

B∗(δ) + ωL (s) = ωL+ δ
µ

(s) + δ

2
, (74)

where

ωL (s) = √
µ(B(L + s) − B(s)) − µ

L

2
(75)

is the process that appears in Eq. (19). The argument is completed by evaluating
the A limit in the two ways. The remaining details are straightforward. �

Proof of the Classical Feynman-Kac formula, Eq. (21): The proof of
Proposition 4.1 applies to the exponential functional of the standard Brownian
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motion. Instead of Eq. (68), the required invariance is simply B∗(δ) + B(s) =
B(s + δ). �

Proof of Proposition 6.1: The proof follows the same pattern as the proof of
Proposition 4.1 but requires a different invariance. Instead of Eq. (68), we need
the following truncation scale invariance

B∗(δ) + ωL ,ε(s) = ωL ,εe−δ/µ (se−δ/µ) + δ

2
. (76)

As before, this is verified by comparing the means and variances of the two
processes. The argument is completed by evaluating the A limit in the two ways.
Details are straightforward and will me omitted. �

Proof of Proposition 6.2: Again, the proof is based on evaluating the A limit in
the two ways. We need yet another invariance principle

B∗(δ) + ωL ,ε(s) = ωLe2δ/µ,εeδ/µ (seδ/µ) + δ

2
, (77)

which is verified as usual. Proceeding as before, we obtain the equation
(

t
∂

∂t
− µ

2
z2 ∂2

∂z2
− z

∂

∂z
+ 2L

∂

∂L

)
v(z, µ, t, L) = 0. (78)

Combining this with Eq. (42), we arrive at Eq. (43). Equation (44) is an obvious
corollary of Eq. (43) due to v(z, µ, L) = v(z, µ, L , L). �

Proof of Proposition 6.3: This is a special case of Lemma 8.1, Eq. (64). �

We now proceed to the proof of Proposition 5.1. The general idea of proof
is similar to that of Proposition 4.1 but the details are much more difficult and
require two additional computations that are explained in Lemmas 8.3 and 8.4
below. Of the previous results, we only require Lemmas 8.1 and 8.2. We remind

the reader that Cov(ωε(s1), ωε(s2))
�= µ gL ,ε(s1, s2).

Lemma 8.3. Let ωµ,L ,ε(s) be the gaussian process of Eqs. (4)–(6) and f (µ, s)
be an arbitrary continuous function that vanishes as µ → 0. Let

B(s)
�= e f (µ,s)+ωε(s) − 1. (79)

Then, given any distinct s1, . . . , sk ∈ [0, L],

E[B(s1)B(s2)]= (
e f (µ,s1)−1

)(
e f (µ,s2)−1

)+µ gL ,ε(s1, s2)+o(µ), (80)

E[B(s1) · · ·B(sk)] = (
e f (µ,s1) − 1

) · · · (e f (µ,sk ) − 1
) + o(µ), k �= 2, (81)

as µ → 0.
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Proof: It is easy to show from Eqs. (4)–(6) that for any subset σ of {1, . . . , k}

E

[
exp

(∑
i∈σ

ωε(si )

)]
= exp

⎛
⎜⎝

∑
i< j,

i, j∈σ

µ gL ,ε(si , s j )

⎞
⎟⎠ . (82)

Let Sp denote the set of all subsets of {1, . . . , k} that consist of exactly p indices,
p = 0 · · · k, with the convention that the only element of S0 is the empty set. Then,
given k distinct numbers, we have the algebraic identity

(a1 − 1) · · · (ak − 1) =
k∑

p=0

(−1)k−p
∑
σ∈Sp

∏
i∈σ

ai , (83)

taking all empty sums to mean zero and empty products to mean one. It is easily
verified by induction. If we now expand the brackets on the left-hand side of
Eq. (81) and make use of Eqs. (82) and (83), we obtain

k∑
p=0

(−1)k−p
∑
σ∈Sp

exp

⎛
⎜⎝

∑
i∈σ

f (µ, si ) + µ
∑
i< j,

i, j∈σ

gL ,ε(si , s j )

⎞
⎟⎠ . (84)

It remains to expand this expression in µ and recall that f (µ, s) → 0 as µ → 0
by assumption. There results

k∑
p=0

(−1)k−p
∑
σ∈Sp

e
∑
i∈σ

f (µ,si ) + µ

k∑
p=0

(−1)k−p
∑
σ∈Sp

∑
i< j,

i, j∈σ

gL ,ε(si , s j ) + o(µ). (85)

By Eq. (83), the first term in Eq. (85) is exactly
∏k

i=1(exp( f (µ, si )) − 1) that
occurs on the right-hand side of Eq. (81). It is not difficult to see that the second
term in Eq. (85) equals µ gL ,ε(s1, s2) if k = 2 and is zero otherwise. �

Lemma 8.4. Let ωµ,L ,ε(s) be the gaussian process of Eqs. (4)–(6) and f (s) be
an arbitrary continuous function that does not involve µ. Let

uε(z, µ, f ) exp

(
− z

∫ L

0
eµ f (s)+ωε(s) ds

)
. (86)

Then, there holds the following identity

∂

∂µ
uε(z, µ, f ) = −zuε(z, µ, f )

∫ L

0
eµ f (s)+ωε(s) f (s) ds

− lim
δ→0

[
uε(z, µ, f )

δ

∞∑
k=1

(−z)k

k!

(∫ L

0
eµ f (s)+ωε(s)

(
eAε(s) − 1

)
ds

)k
]
, (87)
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where

Aε(s)
�= ωµ−δ,L ,ε(s) − ωµ,L ,ε(s). (88)

Proof: The result follows from representing uε(z, µ − δ, f ) as

δzuε(z, µ, f )
∫ L

0
eµ f (s)+ωε(s) ds + e−z

∫ L
0 eµ f (s)+ωµ,L ,ε(s) (1+eAε (s)−1) ds + o(δ)

and expanding the second term in powers of the “small” parameter
∫ L

0
eµ f (s)+ωε(s)

(
eAε(s) − 1

)
ds

that vanishes as δ → 0. �

Proof of Proposition 5.1: Let vε(z, µ, f ) denote the generalized Laplace trans-
form of dM ε(s) measure so that v(z, µ, f ) = limε→0 vε(z, µ, f ).9 The starting
point is the limit

A
�= ∂

∂δ

∣∣∣∣
δ=0

E∗ [
vε

(
zeB∗(δ), µ, f

)]
, (89)

where B∗(t) is the standard Brownian motion independent of ωε(s). By the back-
ward Kolmogorov equation, we have

A = 1

2

∂2

∂x2

∣∣∣∣
x=0

vε (zex , µ, f ) = 1

2

[
z

∂

∂z
+ z2 ∂2

∂z2

]
vε(z, µ, f ). (90)

On the other hand, this limit can be computed in a different way. There holds
the following equality in law of stochastic processes viewed as random functions
of s on the interval [0, L] at fixed 0 < δ < µ and ε

B∗(δ) + ωµ,L ,ε(s) = ωµ−δ,L ,ε(s) + ω̄δ,eL ,ε(s) + δ

2
, (91)

where ω̄ε(s) denotes an independent copy of the ωε(s) process at the intermittency
parameter δ and rescaled decorrelation length eL . This is the intermittency pa-
rameter invariance. As both processes are gaussian, it is sufficient to show that
their means and covariance functions coincide, which follows by inspection from
Eqs. (4)–(6). There results the identity in law

eB∗(δ)
∫ L

0
eµ f (s)+ωµ,L ,εds = e

δ
2

∫ L

0
eµ f (s)+ωµ−δ,L ,ε(s)+ω̄δ,eL ,ε(s)ds.

9 As we did in Sec. 5, we leave out L and include µ in the list of arguments.
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Thus, to compute the limit in Eq. (89) we need to expand

exp

(
− ze

δ
2

∫ L

0
eµ f (s)+ωµ−δ,L ,ε(s)+ω̄δ,eL ,ε(s)ds

)
(92)

in δ up to o(δ) terms. Let Aε(s) be as in Eq. (88) and

Āε(s)
�= ω̄δ,eL ,ε(s). (93)

While we do not know how to expand either Aε(s) or Āε(s) in δ, they both clearly
vanish as δ → 0. It follows that the expression in Eq. (92) can be written as

e−z
∫ L

0 eµ f (s)+ωµ,L ,ε (s)ds
[
1 − δ

z

2

∫ L

0
eµ f (s)+ωµ,L ,ε(s)ds +

∞∑
k=1

(−z)k

k!
Ck

]
, (94)

C �=
∫ L

0
eµ f (s)+ωµ,L ,ε(s)

(
eAε(s)+Āε(s) − 1

)
ds, (95)

up to o(δ) terms. The advantage of this representation is that the only ω̄ε depen-
dence is in Āε(s). This allows us to compute the E∗ expectation in Eq. (89). Indeed,
Eq. (89) entails two expectations: the E with respect to ωε process inherited from
the definition of vε(z, µ, f ) and the E∗ expectation with respect to ω̄ε process.
Interchanging their order, it follows from Eq. (94) that computing the E∗ expec-
tation is now reduced to computing E∗[Ck]. As Aε(s) and Āε(s) are independent
processes, it follows from Lemma 8.3 applied to B(s) = exp(Aε(s) + Āε(s)) − 1
that the E∗ expectation equals

E∗[B(s1)B(s2)] = (
eAε(s1) − 1

)(
eAε(s2) − 1

) + δ geL ,ε(s1, s2) + o(δ), (96)

E∗[B(s1) · · ·B(sk)] = (
eAε(s1) − 1

) · · · (eAε(sk ) − 1
) + o(δ), k �= 2. (97)

We have now everything we need to compute the limit in Eq. (89). To sim-
plify the following formulas, we will use uε(z, µ, f ) introduced in Eq. (86) so
that vε(z, µ, f ) = E[uε(z, µ, f )] and write ⊗k to denote the multiple integral∫ L

0 · · · ∫ L
0 d
s(k). Collecting what we have shown so far, we obtain

E∗ [
vε

(
zeB∗(δ), µ, f

)] − vε(z, µ, f ) = δ
z

2

∂

∂z
vε(z, µ, f ) (98)

+
∞∑

k=1

(−z)k

k!
E

[
uε(z, µ, f )

( ∫

⊗1
eµ f (s)+ωε(s)

(
eAε(s) − 1

)
ds

)k]
(99)

+ δ
z2

2
E

[
uε(z, µ, f )

∫

⊗2
eµ f (s1)+ωε(s1)+µ f (s2)+ωε(s2) geL ,ε(s1, s2)d
s(2)

]
+ o(δ).

(100)
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It remains to divide by δ and take the limit δ → 0. By Lemma 8.4, we have

lim
δ→0

1

δ

∞∑
k=1

(−z)k

k!
E

[
uε(z, µ, f )

(∫

⊗1
eµ f (s)+ωε(s)

(
eAε(s) − 1

)
ds

)k]
, (101)

= − ∂

∂µ
vε(z, µ, f ) − z

∫

⊗1
eµ f (s) f (s)E[uε(z, µ, f )eωε(s)] ds, (102)

= − ∂

∂µ
vε(z, µ, f ) − z

∫

⊗1
eµ f (s) f (s)vε(z, µ, f + gL ,ε(·, s)) ds,

(103)

where the last equality follows from Lemma 8.1. As for the expression in
Eq. (100), we can write geL ,ε(s1, s2) = 1 + gL ,ε(s1, s2) resulting in

z2

2

∂2

∂z2
vε(z, µ, f ) + z2

2

∫

⊗2
eµ( f (s1)+ f (s2)+gL ,ε(s1,s2))gL ,ε(s1, s2)

× vε(z, µ, f + gL ,ε(·, s1) + gL ,ε(·, s2)) d
s(2) (104)

by Lemma 8.1. Collecting all terms, we finally obtain for the limit in Eq. (89)

z

2

∂

∂z
vε(z, µ, f ) + z2

2

∂2

∂z2
vε(z, µ, f ) − z

∫

⊗1
eµ f (s) f (s)vε(z, µ, f + gL ,ε(·, s)) ds

− ∂

∂µ
vε(z, µ, f ) + z2

2

∫

⊗2
eµ( f (s1)+ f (s2)+gL ,ε(s1,s2))gL ,ε(s1, s2)

× vε(z, µ, f + gL ,ε(·, s1) + gL ,ε(·, s2)) d
s(2). (105)

The result follows by comparing this formula with the expression in Eq. (90) and
taking the limit ε → 0. �

Proof of Proposition 5.2: The starting point is the identity

∫ 1

0
· · ·

∫ 1

0

m∏
i< j

|si − s j |−µd
s(m) = (−1)m ∂m

∂zm

∣∣∣∣
z=0

E
[
e−zM(1)

]
(106)

that follows from Eq. (39) by letting L = 1. Now, the Leibnitz formula shows that

∂m

∂zm

∣∣∣∣
z=0

[e−z zk] = (−1)m−k m!

(m − k)!
, k = 0 · · · m, (107)

and is zero otherwise. The result now follows from Eq. (38). �
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9. CONCLUSIONS

We presented a new approach to the distribution of the limit lognormal pro-
cess. The approach is based on novel functional Feynman-Kac equations for the
Laplace transform of the limit distribution. The equations capture the stochastic
dependence structure of increments (SDSI) of the process and quantify how its
distribution varies with the intermittency parameter.

The origin of the Feynman-Kac equations is rooted in special invariance
identities of the stationary gaussian process, which underlies the limit lognormal
construction, combined with the backward Kolmogorov equation and a generalized
Girsanov theorem. We established four such identities that capture invariances
of this gaussian process with respect to the decorrelation length, intermittency
parameter, and truncation scale.

Our main result is twofold. First, we showed that the SDSI of the limit
lognormal process has two layers of complexity, each of which can be described
by a functional Feynman-Kac equation that follows from the decorrelation length
invariance. As we illustrated in the case of the Schmitt process, M(L) can be
seen as the limit of a sum of products of non-identically distributed, independent,
recurrent, lognormal random weights. By removing the non-identically distributed
condition, we introduced a toy limit lognormal process that has the same primary
layer of complexity, i.e. independent, recurrent, and lognormal weights, as do
the limit lognormal and Schmitt processes. The toy process is an interesting
nonmarkovian stochastic process that shares with the original constructions the
properties of having stationary increments and a finite decorrelation length.

The first pair of Feynman-Kac equations quantifies the primary layer of
complexity. The mathematical structures of the equations for the limit lognor-
mal and toy processes are essentially the same thereby reflecting the fact that
the corresponding SDSIs share the primary complexity layer. The second pair of
Feynman-Kac equations captures the secondary layer of complexity, and the math-
ematical structures that these equations exhibit are quite different. In the toy case,
the equation is a single-variable equation, i.e. it involves the Laplace transform
of the unknown distribution only. In the exact limit lognormal case, the equation
does not reduce to a single-variable equation but rather contains terms involving
the entire path of the process. The origin of the difference is the second layer of
complexity that the toy process does not possess, i.e. the fact that the independent
lognormal weights are not identically distributed in the exact construction. The
phenomenon of path dependent terms is a reflection of the non-markovian struc-
ture of the underlying gaussian processes that define both the exact and toy limit
lognormal processes. The underlying process in the limit lognormal case is very
strongly non-markovian, while this process is only mildly non-markovian in the
toy case making it possible to establish a single-variable equation for it and, in
fact, compute its Laplace transform in a closed form.
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Our second result is the exact computation of the generalized Laplace trans-
form and integral moments of the limit lognormal process as power series ex-
pansions in the intermittency parameter. The coefficients of these expansions are
computed iteratively by multiple integration via explicit three-term recursions.
The origin of these expansions is the intermittency differentiation equation, which
is nothing but a functional Feynman-Kac equation that corresponds to the intermit-
tency invariance. It relates the derivative of the generalized Laplace transform with
respect to the intermittency parameter to special functional shifts. While it is also
not a single-variable equation, the intermittency differentiation equation differs
from the SDSI equations in a very significant way: it does not involve derivatives
with respect to the argument of the Laplace transform and so can be iterated in-
finitely many times. It is precisely this property that allows us to represent the gen-
eralized Laplace transform and moments as infinite series expansions. In particular,
we obtained such expansions for the Laplace transform itself and all the path depen-
dent terms that enter the SDSI equations, thereby effectively solving them exactly.

As side results, the method of functional Feynman-Kac equations allowed us
to give simpler proofs for the main results that appeared first in Ref. 28 and to
establish novel recurrence relations for the Selberg integral, which is known to
represent the positive integral moments of the limit lognormal process.

Our results pose several interesting problems and open a new avenue for
future research. First, we do not have a proof of convergence of our infinite series
expansions. Such a proof requires computing all the coefficients

∫
⊗k hn,k(
s) d
s(k)

or at least their asymptotics. In this paper we restricted ourselves to the order
one coefficients only. The investigation of higher order coefficients is left to future
studies, suffice it to say that they appear to have a number theoretic content. Second,
another aspect of computing the coefficients is to understand how hn,k(
s) depend
on the shifts f (s). This knowledge would allow us to derive the SDSI equations
from the intermittency differentiation equation. In fact, we computed the first
nontrivial coefficients and verified that both the SDSI equations and as well as the
generalized star equation hold in this approximation. It would be interesting to
show that they continue to hold to all orders of the intermittency parameter, which
would verify the claim that the intermittency differentiation equation contains in
itself all the other equations. Finally, it still remains an open problem to derive
a single-variable equation for the Laplace transform. This task is not so much
important for computing the distribution but rather for gaining an insight into
multifractal physics.

APPENDIX
In this section we will derive the probability density function (pdf) and Laplace
transform of M (toy)(L). The derivation uses the “closeness” of the omega process
in Eqs. (19) and (75) to being markovian that we already mentioned at the end of
Sec. 4.
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Proposition A.1. Let W (s) denote a standard Brownian motion starting at zero
and let N denote an independent gaussian random variable with mean −µ L

2 and
variance µ L

2 . Then, the law of M (toy)(L) is the same as that of

2

µ
eN

∫ µ L
2

0
eW

(
µ L

2

)
−2W (s)ds. (A1)

Proof: We have the following equality in law of stochastic processes on the
interval s ∈ [0, L]

ωL (s) = N + W

(
µ

L

2

)
− 2W

(
µ

s

2

)
. (A2)

The proof follows upon comparing the means and covariances of both processes.
The result now follows by a change of variables. �

The task of computing the law of M (toy)(L) is thus reduced to that of com-
puting

Z =
∫ t

0
eW (t)−2W (s)ds (A3)

at t = µL/2, whose law is well-known. Indeed, exponential functionals of Brow-
nian motion appear in one-dimensional disordered systems, confer Ref. 25 as well
as in mathematical finance, confer Ref. 10. In particular, the pdf of Z is shown in
Ref. 23 to be

pdf (Z)(z) = 2K0

(
1

z

)
θ

(
1

z
, t

)
dz

z
, (A4)

where K0(r ) denotes the modified Bessel function of the second kind of order zero
and the function θ (r, t) is defined by

θ (r, t) = r√
2π3t

∫ ∞

0
e(π2−x2)/2t e−r cosh(x) sinh(x) sin

(
πx

t

)
dx . (A5)

As a corollary of Proposition A.1 we then obtain the pdf and Laplace transform
of M (toy)(L) in terms of those of Z. Letting t = µL/2, we have

pdf M (toy)(L)(z) = µ

2

∫ ∞

−∞
pdf (Z)(zµ et−y/2)

e− y2

2t√
2π t

et−y dy, (A6)

v(toy)(z, L) =
∫ ∞

−∞
v(Z)(2zey−t/µ)

e− y2

2t√
2π t

dy. (A7)
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